

INFLUENCIA DE NANOPARTÍCULAS BIMETÁLICAS Au-Ag EN LA FOTOISOMERIZACIÓN TRANS-CIS DEL AZOPOLÍMERO PEC4

Leticia Larios López^a, Saraí Magallán Gutiérrez^a y Rosa Julia Rodríguez González^a

^aCentro de Investigación en Química Aplicada, Saltillo, Coah., leticia.larios@ciqa.edu.mx

RESUMEN:

En este trabajo, nanopartículas bimetálicas de oro-plata (Au80, Au50 y Au20) fueron dispersadas en un polímero fotosensible de tipo azobenceno (pEC4) en concentraciones de 0.5, 10 y 50% en peso y se evaluó la capacidad de fotoisomerización *trans-cis* del polímero puro y mezclado con las NP cuando es irradiado con una lámpara de luz ultravioleta de 365nm. Los resultados de espectroscopía de UV-vis mostraron que las interacciones entre las NP y el azopolímero ocasionan que la banda del plasmón de las NP se desplace λ =19 nm hacia el azul. De acuerdo con los resultados obtenidos de la cinética de fotoisomerización *trans-cis*, los porcentajes del isómero *cis*azobenceno en película fueron más bajos (6.5-9.6%) que los obtenidos en solución (29.0-32.5%). Asimismo, fue determinado que la dispersión de las NP bimetálicas en el polímero pEC4 permite que la isomerización *trans-cis* sea más fácilmente inducida que en el polímero puro, obteniéndose los mejores resultados para la mezcla con 0.5% en peso de las NP bimetálicas Au80 (80% de oro y 20% de plata).

1. INTRODUCCIÓN

Durante las últimas dos décadas, los polímeros conteniendo grupos azobenceno han atraído de manera importante el interés científico y tecnológico debido principalmente a las propiedades extraordinarias que estos grupos presentan por su interacción con la luz¹⁻³. Algunas de estas propiedades foto-inducidas son la isomerización trans-cis del azobenceno (a escala molecular), el alineamiento u orientación de estas unidades (a escala nanométrica) y la migración o arrastre de masa (a escala micrométrica)⁴. Estas características confieren a los polímeros de tipo azobenceno la capacidad para ser utilizados en diversas aplicaciones optoelectrónicas, en holografía, almacenamiento óptico de datos, entre otras^{1,2,5}. Con el propósito de mejorar la velocidad de respuesta de los grupos azobenceno a la irradiación, en años recientes se han incorporado nanopartículas (NP) metálicas a la matriz polimérica fotosensible⁶⁻⁸. De esta manera se ha generado un nuevo grupo de materiales nanocompuestos que combinan las propiedades únicas de las nanopartículas (p.ej. el plasmón de superficie) con la capacidad de fotoisomerización trans-cis del azobenceno. Algunas de las nanopartículas que se han utilizado para este propósito son de plata^{6,7}, de oro, de óxido de Zinc⁸, etc. Por ejemplo, Zhou y col.⁶ reportaron un incremento hasta de 50 % en la velocidad de re-orientación de los grupos azobenceno cuando había NP de plata dispersas en el azopolímero. Otro tipo de partículas que también resultan interesantes y que han sido poco estudiadas son las nanopartículas bimetálicas de oro-plata, en las cuales la configuración de los metales puede ser de núcleo-coraza o de una aleación^{9,10}; y en ambos casos, las propiedades de los metales se combinan. Por lo que en este trabajo se presenta el efecto que tienen las NP bimetálicas de oro-plata en la isomerización trans-cis de un polímero de tipo azobenceno de cadena principal cuando se irradia con una lámpara de luz UV de 365nm. Para este análisis se determinaron los porcentajes de cis-azobenceno alcanzados en los materiales nanocompuestos, buscando correlacionar los resultados con la concentración de NP bimetálicas en el nanocompuesto polimérico así como con el contenido relativo de oro y plata de éstas.

2. PARTE EXPERIMENTAL

Las nanopartículas bimetálicas de oro-plata recubiertas con dodecanotiol (diámetro 3.5±0.1nm) fueron obtenidas por el método de Brust, de acuerdo con procedimientos reportados previamente¹⁰. El mezclado de las nanopartículas con el polímero pEC4 fue llevado a cabo en solución utilizando cloroformo como disolvente. Para ello, primero se preparó una solución de las nanopartículas con una concentración conocida y luego cantidades definidas de esta solución fueron mezcladas con el polímero pEC4. De esta manera se prepararon las 5 mezclas de polímero/nanopartículas con relación en peso de 0.5, 10 y 50 %, indicadas en la Tabla 1.

Tabla 1. Características de las mezclas de polímero y nanopartículas.

Mezcla	Tipo de	Porcentaje en peso del	Porcentaje en peso de		
	nanopartículas	polímero pEC4	las nanopartículas		
	(oro:plata)	%	%		
p05-Au20	Au20 (20:80)	99.5	0.5		
p05-Au50	Au50 (50:50)	99.5	0.5		
p05-Au80	Au80 (80:20)	99.5	0.5		
p10-Au80	Au80 (80:20)	90	10		
P50-Au80	Au80 (80:20)	50	50		

Para el estudio de la fotoisomerización se utilizó un espectrofotómetro UV-Vis-NIR Cary 5000 de Varian. El procedimiento consistió en obtener los espectros de absorción de las mezclas en solución y en película antes y después de ser irradiadas con una lámpara de luz UV (λ =365 nm) por intervalos de tiempo definidos. Los porcentajes de isomerización para cada tiempo de irradiación fueron calculados mediante la ecuación %Z=[(A₀-A_t)/A₀]x100, en donde A₀ y A_t son las absorbancias a la λ_{max} antes y después de la irradiación, respectivamente.

3. RESULTADOS

El polímero pEC4 utilizado en este trabajo corresponde a un poliéster líquido-cristalino que posee dos grupos azobenceno unidos por un fenileno. Debido a la presencia de estos grupos, el polímero puede experimentar un proceso de isomerización reversible *trans-cis* cuando se expone a luz UV de determinada longitud de onda. En la Figura 1 se muestran los espectros de absorción UV-vis para el polímero pEC4 obtenidos en (a) solución y en (b) película durante el proceso de irradiación con luz de 365nm. Analizando el espectro correspondiente al polímero puro en solución antes de ser irradiado (t=0s) se observan dos bandas con máximos de absorción en 342 y 380nm, las cuales se deben a las transiciones electrónicas π - π * de todos los grupos conjugados presentes en la molécula¹¹. También en el espectro del polímero en película se observan las dos bandas de absorción con la diferencia de que la segunda banda tiene una absorbancia menor que la primera y el máximo presenta un desplazamiento de 10nm hacia el rojo, lo cual se debe a las interacciones de estos cromóforos en el estado sólido. Usualmente antes de irradiar, los grupos fotosensibles se encuentran en su isómero *trans*-azobenceno que es termodinámicamente más estable que el *cis*azobenceno¹² y conforme transcurre el tiempo de irradiación se da la fotoisomerización *trans-cis* hasta que se alcanza un estado foto-estable.

Figura 1. Espectros de absorción UV-vis del polímero pEC4 obtenidos en (a) solución y (b) en película después de los tiempos de irradiación indicados.

Cuando las mezclas p05-Au80, p10-Au80 y p50-Au80 se irradiaron con luz UV de 365nm mostraron un comportamiento similar al del polímero puro. En los espectros de la mezcla p50-Au80 correspondiente al polímero con 50% en peso de NP bimetálicas, además de las dos bandas de absorción del polímero (λmax=340 y 381nm) se observó otra banda en ~521nm asociada al plasmón de las nanopartículas Au80. Comparando este máximo con el observado en las NP bimetálicas Au80 en solución (540nm) es claro que existe un desplazamiento hipsocrómico de ~19 nm; esta modificación del plasmón de superficie de las NP también se observó en las películas. Estos resultados confirman que existen ciertas interacciones entre las NP y el azopolímero pEC4.

En la Tabla 2 se reportan los porcentajes del isómero *cis*-azobenceno en función del tiempo de irradiación para el polímero pEC4 puro y mezclado con 0.5%, 10% y 50% en peso de nanopartículas Au80.

	cis-azobenceno (%) en solución				cis-azobenceno (%) en película			
tiempo	(λ _{max})				(λ _{max})			
(s)	pEC4	0.5%	10%	50%	pEC4	0.5%	10%	50%
	(380nm)	(381nm)	(381nm)	(381nm)	(390nm)	(390nm)	(392nm)	(392nm)
0	0	0	0	0	0	0	0	0
30	17.9	11.4	25.2	13.4	1.6	3.1	2.4	3.2
60	24.3	24.0	30.1	21.3	2.7	4.1	3.9	4.1
90	26.7	27.1	31.7	24.0	3.3	5.0	4.9	4.3
120	27.6	30.2	32.0	24.7	3.8	5.4	5.1	4.7
180	28.1	31.4	32.3	25.6	4.5	5.7	5.9	5.1
480	28.8	32.1	33.0	26.1	6.3	7.7	7.4	6.0
780	29.0	32.3	33.0	26.3	6.9	8.6	8.0	6.5
1080					7.4	8.9	8.5	6.9
1380					7.3	9.4	8.8	7.4
1680					7.8	9.6	9.2	7.6

Tabla 2 Cinética de foto-isomerización trans-cis del polímero puro pEC4 y mezclado con NP Au80.

De acuerdo con los datos reportados en la Tabla 2, el polímero pEC4 en solución alcanza un valor de 29.0% del *cis*-azobenceno en el estado foto-estable (%Z_{pss}) mientras que en película es apenas de 7.8%. Además, estos resultados muestran claramente que un contenido de 0.5 % de NP bimetálicas Au80 favorece el proceso de fotoisomerización *trans-cis* del polímero tanto en solución como en película; y en ambos casos, el menor porcentaje de isómero cis-azobenceno se obtuvo con un 50% de NP bimetálicas.

Tomando en cuenta los resultados anteriores, se evaluó el efecto del contenido de metal (oro o plata) de las nanopartículas bimetálicas en la fotoisomerización del pEC4. Para esto se prepararon mezclas del polímero con 0.5% en peso de NP bimetálicas Au80, Au50 o Au20, las cuales fueron identificadas como p05-Au80, p05-Au50 y p05-Au20, respectivamente. Los resultados obtenidos (Figura 2a) mostraron que los tres tipos de NP bimetálicas favorecen la fotoisomerización del polímero en solución; por ejemplo, en el polímero puro se obtiene un %Zpss de 29.0% y mezclado con las NP es de %Zpss ~32%. Para el caso de la foto-irradiación del polímero en película (Figura 2b) se observa que el pEC4 con 0.5% de NP Au80 alcanza el porcentaje de isomerización más alto que los demás sistemas, en tanto que el polímero con las NP Au50 o Au20 alcanzan menor porcentaje de isomerización que el polímero puro.

Por último, es importante mencionar que si bien los porcentajes de foto-conversión *trans-cis* obtenidos en este trabajo son relativamente bajos (<32%) comparados con algunos valores de foto-conversión reportados en la literatura (>60%)³, la foto-respuesta observada en estos sistemas nanocompuestos sugiere que estos podrían responder de manera eficiente a la irradiación con luz polarizada para producir el foto-alineamiento de los grupos azobenceno.

Figura 2. Proceso de isomerización *trans-cis* (a) en solución y (b) en película del polímero pEC4 puro y mezclado con 0.5% en peso de las NP bimetálicas indicadas.

4. CONCLUSIONES

La banda del plasmón de las nanopartículas dispersas en el polímero pEC4 presentó un desplazamiento hipsocrómico de ~19 nm, lo cual se consideró como un buen indicio de su interacción con el polímero.

Los porcentajes del isómero *cis*-azobenceno para el polímero pEC4 puro y en sus mezclas con nanopartículas en solución fueron más altos que los alcanzados en película. Además, el tiempo necesario para alcanzar este estado foto-estable fue relativamente corto (~780s) en solución, mientras que en película se requirió de un tiempo mayor a 1680s. Un contenido de 0.5% y 10% de NP bimetálicas Au80 en el polímero favorecen su fotoisomerización *trans-cis* en solución y en película, mientras que con 50% de NP la foto-respuesta es más lenta y el porcentaje de cis-azobenceno alcanzado es menor que en el polímero puro. La dispersión de NP bimetálicas, que tienen 80% de oro y 20% de plata, en el polímero pEC4 favorece de manera más eficiente su proceso de fotoisomerización *trans-cis* que las nanopartículas que tienen menor proporción de oro (Au50 y Au20).

Agradecimientos. Al CONACYT por el apoyo otorgado a través del proyecto 157652-Y. A Enrique Díaz Barriga y Guadalupe Méndez por su apoyo técnico en la caracterización de los materiales.

BIBLIOGRAFÍA

- 1. Priimagi A, Barrett C J y Shishido A, "Recent twists in photoactuation and photoalignment control" J. Mater. Chem. C, Vol 2, 2014, pp. 7155–7162.
- 2. Hvilsted S, Sánchez C, Alcalá R, "The volume holographic optical storage potential in azobenzene containing polymers", J. Mater Chem, Vol 19, 2009, pp. 6641-6648.
- García T, Larios L, Rodríguez RJ, Martínez G, Solano C, Navarro D, "Liquid Crystalline Polymers bearing phenylene (azobenzene) moieties substituted with an electron-acceptor lateral group. Synthesis, mesomorphic behavior and photo-induced isomerization" Polymer, Vol 53, 2012, pp. 2049-2061.
- 4. Cojocariu C., Rochon P. "Light-induced motions in azobenzene-containing polymers". Pure Appl. Chem., Vol 76, 2004, pp. 1479–1497.
- 5. Emoto A, Uchida E, Fukuda T. "Optical and physical applications of photocontrollable materials: azobenzene-containing and liquid crystalline polymers". Polymers. Vol. 4, 2012, pp.150–186.
- Zhou J., Yang J., Sun Y., Zhang D., Shen J., Zhang Q., Wang K., "Effect of silver nanoparticles on photo-induced reorientation of azo groups in polymer films", Thin Solid Films, Vol 515, 2007, pp. 7242-7246.
- 7. Shen J, Wu S, Huang J, Zhang Q, Wang K, "Localized surface plasmon resonance effect on photo-induced alignment of films composed of silver nanoparticles and azopolymers with cyano or methyl substitutes on azobenzene moieties", Thin Solid Films, Vol 518, 2010, pp.2128–2133.
- Nedelchev L, Nazarova D, Dragostinova V, "Photosensitive organic/inorganic azopolymer based nanocomposite materials with enhanced photoinduced birefringence", J. Photochem. Photobiol. A: Chem., Vol 261, 2013, pp. 26–30.
- Gonzalez C M, Liu Y, Scaiano J C, "Photochemical Strategies for the Facile Synthesis of Gold-Silver Alloy and Core-Shell Bimetallic Nanoparticles", J. Phys. Chem. C, Vol. 113, 2009, pp. 11861–11867.
- 10.Larios López L, Magallán Gutiérrez S, Medellín DI y. Rodríguez RJ, "Síntesis química de nanopartículas bimetálicas de oro-plata estabilizadas con dodecanotiolato", Memorias del XI Encuentro Participación de la Mujer en la Ciencia, 2013 (ISBN: 978-607-96228-4-1), pp.1-5.
- 11.Liu R, Xiao Q, Li Y, Chen H, Yan Z, Zhu H, "Phenylene ethynylene azobenzenes with symmetrical peripheral chromophores: Synthesis, optical properties and photoisomerization behaviors study", Dyes and Pigments, Vol 92, 2011, pp. 626-632.
- 12. Yager KG, Barrett CJ, "Light-Induced Nanostructure Formation using Azobenzene Polymers". In Polymeric Nanostructures and their Applications, Editado por Nalwa, H. S. Los Angeles: American Scientific Publishers. 2006, Capítulo 8, pp.1-38.