

SILICIO EN EL CRECIMIENTO VEGETATIVO DE PLANTAS DE ARROZ MORELOS-A98

SARA MONZERRAT RAMÍREZ OLVERA ¹, Fernando Carlos Gómez Merino ¹, Libia Iris Trejo Téllez ¹, Lucero del Mar Ruíz Posadas ¹, Gabriel Alcántar González ¹, Crescenciano Saucedo Veloz ¹, Leonardo Hernández Aragón ² y Leticia Tavitas Fuentes ²

 $1\ COLEGIO\ DE\ POSTGRADUADOS,\ 2\ INIFAP\text{-}Campo\ experimental\ Zacatepec\ Morelos\ .\ ramirez.sara@colpos.mx$

El silicio (Si) es un metaloide, y es el segundo elemento más abundante en la corteza terrestre, después del oxígeno. Su aplicación a plantas, ha mostrado efectos benéficos en diversas especies tanto monocotiledóneas como dicotiledóneas, en condiciones normales y bajo estrés biótico o abiótico. En este contexto el objetivo de esta investigación fue evaluar el efecto de la aplicación de 0, 1 y 2 mM Si en el crecimiento de plantas de arroz (Oryza sativa) cv. Morelos A-98. Las semillas utilizadas en esta investigación, se obtuvieron del banco de germoplasma del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Las semillas germinaron en oscuridad por 3 d y se colocaron en luz natural por 11 d. Posteriormente se trasfirieron a un sistema hidropónico en solución Magnavaca (1 mM KCl, 1.5 mM NH₄NO₃, 1 mM CaCl₂ 2H₂O, 45 μM KH₂PO₄, 200 μM MgSO₄ $7H_2O$, 500 μ M Mg (NO_3) $_2$ $6H_2O$, 155 μ M MgCl $_2$ $6H_2O$, 11.8 μ M MnCl $_2$ $4H_2O$, 33 μ M H_3BO_3 , 3 μ M ZnSO₄ 7H₂O, 0.8 μM CuSO₄ 5H₂O, 1 μM NaMoO₄ 2H₂O y 77 μM Fe-EDTA) por 7 d. Después, se reemplazó por solución Yoshida (1.43 mM NH₄NO₃, 1.00 mM CaCl₂ 2H₂O, 1.64 mM MgSO₄ 7H₂O, $1.32 \text{ mM K}_2\text{SO}_4$, $320 \text{ }\mu\text{M NaH}_2\text{PO}_4$, $100 \text{ }\mu\text{M Fe-EDTA}$, $7.99 \text{ }\mu\text{M MnCl}_2$ $4\text{H}_2\text{O}$, $0.15 \text{ }\mu\text{M ZnSO}_4$ $7\text{H}_2\text{O}$, $0.15 \mu M CuSO_4 5H_2O$, $0.08 \mu M (NH_4)_6 Mo_7 O_{24} 4H_2O$ y $1.39 \mu M H_3 BO_3$). A los 14 después del trasplante (ddt), se adicionaron los tratamientos junto a la solución nutritiva, los que consistieron en 0, 1, 2 mM Si a partir de SiO₂. A los 35 ddt las plantas se retiraron se la solución nutritiva y se registró la altura de planta, longitud de raíz, número de macollos y peso de biomasa fresca. Después las plantas se colocaron en una estufa de aire forzado (72 °C por 72 h), y se registró el peso de biomasa seca. Finalmente, se calculó la altura, longitud de raíz y biomasa relativa, así como el crecimiento relativo de macollos, tomando como 100% el crecimiento obtenido en el tratamiento testigo (sin aplicación de Si). Con los datos se realizó un análisis de varianza y prueba de comparación de medias (Duncan, 0.05). La altura y longitud relativa de raíz, así como el crecimiento relativo de macollos y peso de biomasa seca de plantas no se modificó con los tratamientos 1 y 2 mM Si, en relación al tratamiento testigo. Mientras que la adición de 1 mM Si mejoró significativamente el peso relativo de biomasa fresca, sin observar efectos significativos a la concentración 2 mM. La aplicación de Si a plantas de arroz Morelos A-98, no modifica la altura de planta, la longitud de raíz, el número de macollos y el peso de biomasa seca, e incrementa el peso de biomasa fresca.