

□Termodegradación de películas de polietileno de alta y baja densidad con radiación láser de CO2 (10.6μm)□

Karla Ivonne Martínez Sánchez¹, Ma. Rosario González Mota¹, Juan José Soto Bernal¹ y Iliana Rosales Candelas¹ 1 Instituto Tecnológico de Aguascalientes. ivonne mtz@yahoo.com

La baja degradabilidad y alta persistencia de materiales poliméricos de alto peso molecular, como el polietileno, generan un grave problema en la acumulación de residuos en el medio ambiente; por lo tanto, el presente trabajo tiene como objetivo caracterizar los efectos de la radiación láser de CO_2 en la degradación del polietileno de alta y baja densidad. Las películas de polietileno de alta y baja densidad se expusieron a radiación laser de CO_2 a diferentes fluencias y fueron caracterizadas utilizando espectroscopía IR. La termodegradación del polietileno ocasiona la escisión de la cadena polimérica, dando lugar a la formación de macroradicales, formación de grupos terminales y la re-cristalización de la cadena polimérica. Las películas de polietileno expuestas a la radiación láser de CO_2 muestran cambios, principalmente en la fracción de fase cristalina y en formación de grupos metilo (CH_3) y metileno terminales (CH_2) los cuales incrementan y decrecen durante la exposición a la radiación láser de CO_2 ; este comportamiento se debe a la variación de la fluencia, el tiempo de exposición y la potencia del láser, dado que la termodegradación depende directamente de la temperatura, a mayor temperatura mayor degradación.